Copied to
clipboard

G = C32×Dic3⋊C4order 432 = 24·33

Direct product of C32 and Dic3⋊C4

direct product, metabelian, supersoluble, monomial

Aliases: C32×Dic3⋊C4, C62.163D6, C6.4(C6×C12), Dic3⋊(C3×C12), C6.42(S3×C12), C3316(C4⋊C4), (C6×C12).27S3, (C6×C12).25C6, C6.5(D4×C32), (C3×Dic3)⋊3C12, C6.1(Q8×C32), (C2×C6).15C62, C62.60(C2×C6), (C3×C6).32Dic6, C6.17(C3×Dic6), (C32×C6).65D4, (C32×C6).10Q8, (C6×Dic3).13C6, (C32×Dic3)⋊7C4, C2.1(C32×Dic6), (C3×C62).42C22, C2.4(S3×C3×C12), (C3×C6×C12).1C2, C31(C32×C4⋊C4), C329(C3×C4⋊C4), C22.4(S3×C3×C6), (C2×C12).9(C3×S3), (C3×C6).96(C4×S3), (C2×C6).90(S3×C6), (C2×C12).7(C3×C6), (C3×C6).61(C3×D4), C6.51(C3×C3⋊D4), (C3×C6).12(C3×Q8), (Dic3×C3×C6).5C2, (C3×C6).45(C2×C12), (C2×C4).1(S3×C32), C2.1(C32×C3⋊D4), (C32×C6).52(C2×C4), (C2×Dic3).1(C3×C6), (C3×C6).120(C3⋊D4), SmallGroup(432,472)

Series: Derived Chief Lower central Upper central

C1C6 — C32×Dic3⋊C4
C1C3C6C2×C6C62C3×C62Dic3×C3×C6 — C32×Dic3⋊C4
C3C6 — C32×Dic3⋊C4
C1C62C6×C12

Generators and relations for C32×Dic3⋊C4
 G = < a,b,c,d,e | a3=b3=c6=e4=1, d2=c3, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=c-1, ce=ec, ede-1=c3d >

Subgroups: 392 in 220 conjugacy classes, 102 normal (30 characteristic)
C1, C2, C3, C3, C3, C4, C22, C6, C6, C6, C2×C4, C2×C4, C32, C32, C32, Dic3, Dic3, C12, C2×C6, C2×C6, C2×C6, C4⋊C4, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×C12, C2×C12, C2×C12, C33, C3×Dic3, C3×Dic3, C3×C12, C62, C62, C62, Dic3⋊C4, C3×C4⋊C4, C32×C6, C6×Dic3, C6×C12, C6×C12, C6×C12, C32×Dic3, C32×Dic3, C32×C12, C3×C62, C3×Dic3⋊C4, C32×C4⋊C4, Dic3×C3×C6, C3×C6×C12, C32×Dic3⋊C4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, Q8, C32, C12, D6, C2×C6, C4⋊C4, C3×S3, C3×C6, Dic6, C4×S3, C3⋊D4, C2×C12, C3×D4, C3×Q8, C3×C12, S3×C6, C62, Dic3⋊C4, C3×C4⋊C4, S3×C32, C3×Dic6, S3×C12, C3×C3⋊D4, C6×C12, D4×C32, Q8×C32, S3×C3×C6, C3×Dic3⋊C4, C32×C4⋊C4, C32×Dic6, S3×C3×C12, C32×C3⋊D4, C32×Dic3⋊C4

Smallest permutation representation of C32×Dic3⋊C4
On 144 points
Generators in S144
(1 25 13)(2 26 14)(3 27 15)(4 28 16)(5 29 17)(6 30 18)(7 31 19)(8 32 20)(9 33 21)(10 34 22)(11 35 23)(12 36 24)(37 61 49)(38 62 50)(39 63 51)(40 64 52)(41 65 53)(42 66 54)(43 67 55)(44 68 56)(45 69 57)(46 70 58)(47 71 59)(48 72 60)(73 97 85)(74 98 86)(75 99 87)(76 100 88)(77 101 89)(78 102 90)(79 103 91)(80 104 92)(81 105 93)(82 106 94)(83 107 95)(84 108 96)(109 133 121)(110 134 122)(111 135 123)(112 136 124)(113 137 125)(114 138 126)(115 139 127)(116 140 128)(117 141 129)(118 142 130)(119 143 131)(120 144 132)
(1 5 3)(2 6 4)(7 11 9)(8 12 10)(13 17 15)(14 18 16)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)(49 53 51)(50 54 52)(55 59 57)(56 60 58)(61 65 63)(62 66 64)(67 71 69)(68 72 70)(73 75 77)(74 76 78)(79 81 83)(80 82 84)(85 87 89)(86 88 90)(91 93 95)(92 94 96)(97 99 101)(98 100 102)(103 105 107)(104 106 108)(109 111 113)(110 112 114)(115 117 119)(116 118 120)(121 123 125)(122 124 126)(127 129 131)(128 130 132)(133 135 137)(134 136 138)(139 141 143)(140 142 144)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 80 4 83)(2 79 5 82)(3 84 6 81)(7 74 10 77)(8 73 11 76)(9 78 12 75)(13 92 16 95)(14 91 17 94)(15 96 18 93)(19 86 22 89)(20 85 23 88)(21 90 24 87)(25 104 28 107)(26 103 29 106)(27 108 30 105)(31 98 34 101)(32 97 35 100)(33 102 36 99)(37 116 40 119)(38 115 41 118)(39 120 42 117)(43 110 46 113)(44 109 47 112)(45 114 48 111)(49 128 52 131)(50 127 53 130)(51 132 54 129)(55 122 58 125)(56 121 59 124)(57 126 60 123)(61 140 64 143)(62 139 65 142)(63 144 66 141)(67 134 70 137)(68 133 71 136)(69 138 72 135)
(1 43 7 37)(2 44 8 38)(3 45 9 39)(4 46 10 40)(5 47 11 41)(6 48 12 42)(13 55 19 49)(14 56 20 50)(15 57 21 51)(16 58 22 52)(17 59 23 53)(18 60 24 54)(25 67 31 61)(26 68 32 62)(27 69 33 63)(28 70 34 64)(29 71 35 65)(30 72 36 66)(73 118 79 112)(74 119 80 113)(75 120 81 114)(76 115 82 109)(77 116 83 110)(78 117 84 111)(85 130 91 124)(86 131 92 125)(87 132 93 126)(88 127 94 121)(89 128 95 122)(90 129 96 123)(97 142 103 136)(98 143 104 137)(99 144 105 138)(100 139 106 133)(101 140 107 134)(102 141 108 135)

G:=sub<Sym(144)| (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60)(73,97,85)(74,98,86)(75,99,87)(76,100,88)(77,101,89)(78,102,90)(79,103,91)(80,104,92)(81,105,93)(82,106,94)(83,107,95)(84,108,96)(109,133,121)(110,134,122)(111,135,123)(112,136,124)(113,137,125)(114,138,126)(115,139,127)(116,140,128)(117,141,129)(118,142,130)(119,143,131)(120,144,132), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46)(49,53,51)(50,54,52)(55,59,57)(56,60,58)(61,65,63)(62,66,64)(67,71,69)(68,72,70)(73,75,77)(74,76,78)(79,81,83)(80,82,84)(85,87,89)(86,88,90)(91,93,95)(92,94,96)(97,99,101)(98,100,102)(103,105,107)(104,106,108)(109,111,113)(110,112,114)(115,117,119)(116,118,120)(121,123,125)(122,124,126)(127,129,131)(128,130,132)(133,135,137)(134,136,138)(139,141,143)(140,142,144), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,80,4,83)(2,79,5,82)(3,84,6,81)(7,74,10,77)(8,73,11,76)(9,78,12,75)(13,92,16,95)(14,91,17,94)(15,96,18,93)(19,86,22,89)(20,85,23,88)(21,90,24,87)(25,104,28,107)(26,103,29,106)(27,108,30,105)(31,98,34,101)(32,97,35,100)(33,102,36,99)(37,116,40,119)(38,115,41,118)(39,120,42,117)(43,110,46,113)(44,109,47,112)(45,114,48,111)(49,128,52,131)(50,127,53,130)(51,132,54,129)(55,122,58,125)(56,121,59,124)(57,126,60,123)(61,140,64,143)(62,139,65,142)(63,144,66,141)(67,134,70,137)(68,133,71,136)(69,138,72,135), (1,43,7,37)(2,44,8,38)(3,45,9,39)(4,46,10,40)(5,47,11,41)(6,48,12,42)(13,55,19,49)(14,56,20,50)(15,57,21,51)(16,58,22,52)(17,59,23,53)(18,60,24,54)(25,67,31,61)(26,68,32,62)(27,69,33,63)(28,70,34,64)(29,71,35,65)(30,72,36,66)(73,118,79,112)(74,119,80,113)(75,120,81,114)(76,115,82,109)(77,116,83,110)(78,117,84,111)(85,130,91,124)(86,131,92,125)(87,132,93,126)(88,127,94,121)(89,128,95,122)(90,129,96,123)(97,142,103,136)(98,143,104,137)(99,144,105,138)(100,139,106,133)(101,140,107,134)(102,141,108,135)>;

G:=Group( (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60)(73,97,85)(74,98,86)(75,99,87)(76,100,88)(77,101,89)(78,102,90)(79,103,91)(80,104,92)(81,105,93)(82,106,94)(83,107,95)(84,108,96)(109,133,121)(110,134,122)(111,135,123)(112,136,124)(113,137,125)(114,138,126)(115,139,127)(116,140,128)(117,141,129)(118,142,130)(119,143,131)(120,144,132), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46)(49,53,51)(50,54,52)(55,59,57)(56,60,58)(61,65,63)(62,66,64)(67,71,69)(68,72,70)(73,75,77)(74,76,78)(79,81,83)(80,82,84)(85,87,89)(86,88,90)(91,93,95)(92,94,96)(97,99,101)(98,100,102)(103,105,107)(104,106,108)(109,111,113)(110,112,114)(115,117,119)(116,118,120)(121,123,125)(122,124,126)(127,129,131)(128,130,132)(133,135,137)(134,136,138)(139,141,143)(140,142,144), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,80,4,83)(2,79,5,82)(3,84,6,81)(7,74,10,77)(8,73,11,76)(9,78,12,75)(13,92,16,95)(14,91,17,94)(15,96,18,93)(19,86,22,89)(20,85,23,88)(21,90,24,87)(25,104,28,107)(26,103,29,106)(27,108,30,105)(31,98,34,101)(32,97,35,100)(33,102,36,99)(37,116,40,119)(38,115,41,118)(39,120,42,117)(43,110,46,113)(44,109,47,112)(45,114,48,111)(49,128,52,131)(50,127,53,130)(51,132,54,129)(55,122,58,125)(56,121,59,124)(57,126,60,123)(61,140,64,143)(62,139,65,142)(63,144,66,141)(67,134,70,137)(68,133,71,136)(69,138,72,135), (1,43,7,37)(2,44,8,38)(3,45,9,39)(4,46,10,40)(5,47,11,41)(6,48,12,42)(13,55,19,49)(14,56,20,50)(15,57,21,51)(16,58,22,52)(17,59,23,53)(18,60,24,54)(25,67,31,61)(26,68,32,62)(27,69,33,63)(28,70,34,64)(29,71,35,65)(30,72,36,66)(73,118,79,112)(74,119,80,113)(75,120,81,114)(76,115,82,109)(77,116,83,110)(78,117,84,111)(85,130,91,124)(86,131,92,125)(87,132,93,126)(88,127,94,121)(89,128,95,122)(90,129,96,123)(97,142,103,136)(98,143,104,137)(99,144,105,138)(100,139,106,133)(101,140,107,134)(102,141,108,135) );

G=PermutationGroup([[(1,25,13),(2,26,14),(3,27,15),(4,28,16),(5,29,17),(6,30,18),(7,31,19),(8,32,20),(9,33,21),(10,34,22),(11,35,23),(12,36,24),(37,61,49),(38,62,50),(39,63,51),(40,64,52),(41,65,53),(42,66,54),(43,67,55),(44,68,56),(45,69,57),(46,70,58),(47,71,59),(48,72,60),(73,97,85),(74,98,86),(75,99,87),(76,100,88),(77,101,89),(78,102,90),(79,103,91),(80,104,92),(81,105,93),(82,106,94),(83,107,95),(84,108,96),(109,133,121),(110,134,122),(111,135,123),(112,136,124),(113,137,125),(114,138,126),(115,139,127),(116,140,128),(117,141,129),(118,142,130),(119,143,131),(120,144,132)], [(1,5,3),(2,6,4),(7,11,9),(8,12,10),(13,17,15),(14,18,16),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46),(49,53,51),(50,54,52),(55,59,57),(56,60,58),(61,65,63),(62,66,64),(67,71,69),(68,72,70),(73,75,77),(74,76,78),(79,81,83),(80,82,84),(85,87,89),(86,88,90),(91,93,95),(92,94,96),(97,99,101),(98,100,102),(103,105,107),(104,106,108),(109,111,113),(110,112,114),(115,117,119),(116,118,120),(121,123,125),(122,124,126),(127,129,131),(128,130,132),(133,135,137),(134,136,138),(139,141,143),(140,142,144)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,80,4,83),(2,79,5,82),(3,84,6,81),(7,74,10,77),(8,73,11,76),(9,78,12,75),(13,92,16,95),(14,91,17,94),(15,96,18,93),(19,86,22,89),(20,85,23,88),(21,90,24,87),(25,104,28,107),(26,103,29,106),(27,108,30,105),(31,98,34,101),(32,97,35,100),(33,102,36,99),(37,116,40,119),(38,115,41,118),(39,120,42,117),(43,110,46,113),(44,109,47,112),(45,114,48,111),(49,128,52,131),(50,127,53,130),(51,132,54,129),(55,122,58,125),(56,121,59,124),(57,126,60,123),(61,140,64,143),(62,139,65,142),(63,144,66,141),(67,134,70,137),(68,133,71,136),(69,138,72,135)], [(1,43,7,37),(2,44,8,38),(3,45,9,39),(4,46,10,40),(5,47,11,41),(6,48,12,42),(13,55,19,49),(14,56,20,50),(15,57,21,51),(16,58,22,52),(17,59,23,53),(18,60,24,54),(25,67,31,61),(26,68,32,62),(27,69,33,63),(28,70,34,64),(29,71,35,65),(30,72,36,66),(73,118,79,112),(74,119,80,113),(75,120,81,114),(76,115,82,109),(77,116,83,110),(78,117,84,111),(85,130,91,124),(86,131,92,125),(87,132,93,126),(88,127,94,121),(89,128,95,122),(90,129,96,123),(97,142,103,136),(98,143,104,137),(99,144,105,138),(100,139,106,133),(101,140,107,134),(102,141,108,135)]])

162 conjugacy classes

class 1 2A2B2C3A···3H3I···3Q4A4B4C4D4E4F6A···6X6Y···6AY12A···12AZ12BA···12CF
order12223···33···34444446···66···612···1212···12
size11111···12···22266661···12···22···26···6

162 irreducible representations

dim1111111122222222222222
type+++++-+-
imageC1C2C2C3C4C6C6C12S3D4Q8D6C3×S3Dic6C4×S3C3⋊D4C3×D4C3×Q8S3×C6C3×Dic6S3×C12C3×C3⋊D4
kernelC32×Dic3⋊C4Dic3×C3×C6C3×C6×C12C3×Dic3⋊C4C32×Dic3C6×Dic3C6×C12C3×Dic3C6×C12C32×C6C32×C6C62C2×C12C3×C6C3×C6C3×C6C3×C6C3×C6C2×C6C6C6C6
# reps121841683211118222888161616

Matrix representation of C32×Dic3⋊C4 in GL4(𝔽13) generated by

3000
0300
0010
0001
,
9000
0900
0030
0003
,
9000
0300
001010
0004
,
01200
12000
00112
00212
,
5000
0500
0058
0008
G:=sub<GL(4,GF(13))| [3,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1],[9,0,0,0,0,9,0,0,0,0,3,0,0,0,0,3],[9,0,0,0,0,3,0,0,0,0,10,0,0,0,10,4],[0,12,0,0,12,0,0,0,0,0,1,2,0,0,12,12],[5,0,0,0,0,5,0,0,0,0,5,0,0,0,8,8] >;

C32×Dic3⋊C4 in GAP, Magma, Sage, TeX

C_3^2\times {\rm Dic}_3\rtimes C_4
% in TeX

G:=Group("C3^2xDic3:C4");
// GroupNames label

G:=SmallGroup(432,472);
// by ID

G=gap.SmallGroup(432,472);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-2,-3,504,1037,260,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^6=e^4=1,d^2=c^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=c^3*d>;
// generators/relations

׿
×
𝔽